

Livro de referência de Minerais Comuns e Economicamente Relevantes: TECTOSSILICATOS. Museu de Minerais. Minérios e Rochas "Prof. Dr. Heinz Ebert"

<u>SODALITA</u> (sodalite) – Mineral do Grupo dos Tectossilicatos. Grupo dos Feldspatóides. Na₈Al₆Si₆O₂₄Cl₂. De *soda* + *lithos* (pedra) do grego, em alusão a sua composição.

Cristalografia: Isométrico, classe hexatetraédrica ($\overline{4}$ 3m). Grupo espacial e malha unitária: $P\overline{4}$ 3n, a = 8,870-8,882, Z = 1.

Padrão de raios X do pó do mineral:

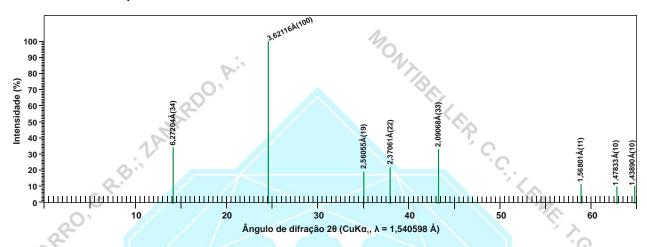
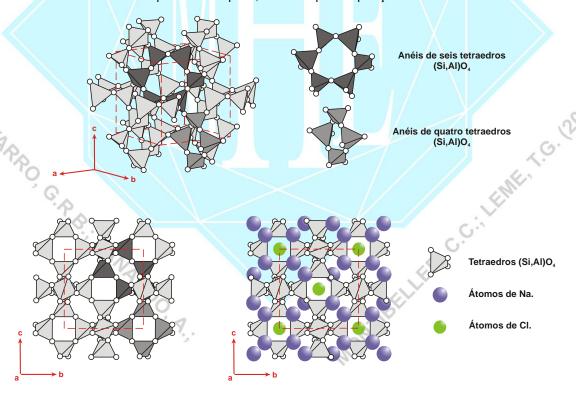



Figura 1 – posição dos picos principais da sodalita em difratograma de raios X (modificado de Schulz & Loens, 1967).

Estrutura: a estrutura da sodalita é constituída por uma rede de tetraedros (Si,Al)O₄, constituindo uma estrutura tridimensional do tipo gaiola, composta por 6 anéis de 4 tetraedros paralelos a {100} e 8 anéis de 6 tetraedros paralelos a {111}. Nesta estrutura, o arranjo entre os anéis forma cavidades ocupadas por átomos de Na e Cl. Entretanto, os átomos de Cl situam-se em canais que se interceptam, formados pela disposição dos anéis de seis octetraédros.

Figura 2 - estrutura da sodalita. (modificado de Hassan et al., 2004; http://webmineral.com/jpowd/JPX/jpowd.php?target_file=Sodalite.jpx#.WKxTQOQiy70).

Hábito: normalmente maciço ou granular, constituindo grãos englobados em outros minerais ou em uma matriz. Os cristais são tipicamente dodecaédricos, porém raros. São semelhantes a cristais de granada. Geminação: possui geminação comum em {111}, formando prismas pseudo-hexagonais por prolongamento ao longo de [111].

Livro de referência de Minerais Comuns e Economicamente Relevantes: TECTOSSILICATOS.

Museu de Minerais. Minérios e Rochas "Prof. Dr. Heinz Ebert"

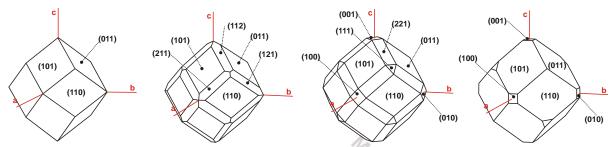


Figura 3 – cristais de sodalita. (modificado de www.smorf.nl; www.mineralienatlas.de)

Propriedades físicas: uma direção de clivagem fraca {110}; fratura: conchoidal a irregular; quebradiço; Dureza: 5,5-6; densidade relativa: 2,27-2,33 g/cm³; apresenta catodoluminescência vermelho-laranja brilhante e fluorescência sob LW e SW UV, com fosforescência amarelada, pode ser fotocromático em magenta. Transparente a translúcido; geralmente azul claro a azul escuro, incolor, branco, rosa pálido, amarelado, amarelo cinzento, verde, esverdeado, cinza, avermelhado; cor do traço: branco; brilho: vítreo a gorduroso.

Propriedades óticas: Cor: incolor a cinza, rosa muito pálido ou azul em seção delgada. Relevo: moderado a forte negativo, n < bálsamo (n = 1,483-1,487). Isotrópico. Como os outros minerais do grupo pode apresentar leve anisotropia, principalmente nos exemplares ricos em inclusões.

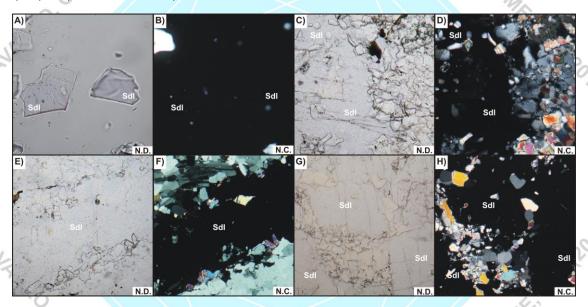
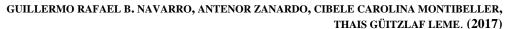



Figura 4 – Fotomicrografias de seções delgadas. A), B) lâmina de pó de sodalita. C), D), E), F), G), H) cristais de sodalita em sodalita-nefelina sienito (azul bahia). Sdl: sodalita. N.D. nicóis descruzados. N.C. nicóis cruzados.

Composição química: Cloro-aluminossilicato de sódio. Pode ocorrer alguma substituição de Na por K e Ca e algumas variedades possuem teores apreciáveis de S. O número de átomos (cátions e ânions) por unidade de fórmula (a.p.u.f.) é calculado na base para 21 (O). (1) sodalita (Mont Saint-Hilaire, Canadá). (2) sodalita em pegmatito que corta sienito nefelinítico (Península Kola, Rússia). (3) sodalita (Magnet Cove, Arkansas, EUA). (1) análise compilada de http://handbookofmineralogy.org/pdfs/sodalite.pdf. (2), (3) análises compiladas de Deer et al. (1981).

	(1)	(2)	(3)
SiO ₂	37,95	36,69	36,36
Al ₂ O ₃	31,42	31,40	32,09
Fe ₂ O ₃		0,85	0,07
FeO	0,39		
MnO	0,08		0,06
CaO		0,19	0,05
MgO		0,03	
Na₂O	24,16	25,96	24,73
K₂O	0,05	0,23	0,12
CI	7,33	5,64	6,79
SO₃	0,09		
-O=CL ₂	1,65		
S		0,38	0,00

Livro de referência de Minerais Comuns e Economicamente Relevantes: TECTOSSILICATOS.

Museu de Minerais. Minérios e Rochas "Prof. Dr. Heinz Ebert"

H ₂ O⁻		0,04	0,12
Total	99,82	101,71	101,7

Propriedades diagnósticas: cor (geralmente azul) e ocorrência. Petrograficamente os minerais deste grupo distinguem-se por serem isótropicos e pelo relevo moderado a forte negativo. Facilmente solúvel por HCl sem gelatinização; pode emitir um odor de H₂S em fraturas. A diferenciação entre os minerais deste grupo pode ser realizada por teste químico usando ácido azótico. Este ácido colocado sobre o mineral em uma lâmina de vidro e deixando-se evaporar lentamente. Se aparecerem cristais cúbicos de halita, o mineral é a sodalita, se formarem agulhas de gipsita o mineral é a hauynita. A não formação de qualquer produto antes da adição de CaCl e o aparecimento de ambos depois da sua adição indica a presença de noseana. As variedades azuis diferem-se da lazurita por não se associar à pirita e pela cor do traço (a lazurita possui traço azul brihante). Petrograficamente distingue-se da fluorita por esta apresentar índice de refração ainda mais baixo e clivagem octaédrica perfeita. Da leucita por esta apresentar normalmente geminação, fraca birrefringência e ser uniaxial (-).

Gênese: mineral encontrado em nefelina sienitos, fonólitos e outras rochas alcalinas. Em rochas calcárias metassomatizadas (metamorfismo de contato entre calcários e rochas alcalinas). Também pode ocorrer em cavidades em rochas vulcânicas.

Associação mineral: ocorre associado a nefelina, cancrinita, andradita, egirina, microclínio, sanidina, albita, calcita, fluorita, ankerita, barita.

Ocorrências: no Brasil é encontrada no sul do estado da Bahia.

Variedades: <u>Álcali-granada</u> – termo utilizado para minerais do grupo da sodalita que se assemelham, cristalográfica e quimicamente, às granadas. <u>Hackmanita</u> – var. de sodalita com enxofre, de cor rosa pálido, que normalmente apresenta fluorescência alaranjada ou vermelha. Homenagem a Victor Hachman, cientista finlandês. <u>Molibdossodalita</u> var. de sodalita com 2,87% de MoO₃ e certa quantidade de cloro. De *molibdênio* + sodalita, em alusão a sua composição.

Usos: as belas massas de coloração azul-escura encontram emprego em artigos ornamentais (rocha ornamental) ou como gema.

REFERÊNCIAS BIBLIOGRÁFICAS

Betejtin, A. 1970. Curso de Mineralogia (2º edición). Traduzido por L. Vládov. Editora Mir, Moscou, Rússia. 739 p.

Betekhtin, A. 1964. **A course of Mineralogy**. Translated from the Russian by V. Agol. Translation editor A. Gurevich. Peace Publishers, Moscou, Rússia. 643 p.

Branco, P. M. 1982. **Dicionário de Mineralogia (2º edição)**. Editora da Universidade (Universidade Federal do Rio Grande do Sul), Porto Alegre, Brasil. 264 p.

Branco, P. M. 2008. Dicionário de Mineralogia e Gemologia. Oficina de Textos, São Paulo, Brasil. 608 p.

Dana, J. D. 1978. **Manual de Mineralogia (5º edição)**. Revisto por Hurlbut Jr., C. S. Tradução: Rui Ribeiro Franco. Livros Técnicos e Científicos Editora S.A., Rio de Janeiro, Brasil. 671 p.

Deer, W. A.; Howie, R. A.; Zussman, J. 1981. **Minerais Constituintes das Rochas – uma introdução**. Tradução de Luis E. Nabais Conde. Fundação Calouste Gulbenkian, Soc. Ind. Gráfica Telles da Silva Ltda, Lisboa, Portugal. 558 p.

Gribble, C. D. & Hall, A. J. 1985. A Practical Introduction to Optical Mineralogy. George Allen & Unwin (Publishers) Ltd, London. 249 p.

Gribble, C. D. & Hall, A. J. 1992. Optical Mineralogy Principles and Practice. Chapman & Hall, Inc. New York, USA. 303 p.

Hassan, I.; Antao, S. M.; Parise, J. B. 2004. Sodalite: High-temperature structures obtained from synchrotron radiation, and Rietveld refinements. **American Mineralogist**, 89, p. 359-364.

Heinrich, E. W. 1965. Microscopic Identification of minerals. McGraw-Hill, Inc. New York, EUA. 414 p.

Kerr, P. F. 1965. **Mineralogia Óptica (3º edición).** Traducido por José Huidobro. Talleres Gráficos de Ediciones Castilla, S., Madrid, Espanha. 432 p.

Klein, C. & Dutrow, B. 2012. **Manual de Ciências dos Minerais (23º edição)**. Tradução e revisão técnica: Rualdo Menegat. Editora Bookman, Porto Alegre, Brasil. 716 p.

GUILLERMO RAFAEL B. NAVARRO, ANTENOR ZANARDO, CIBELE CAROLINA MONTIBELLER, THAIS GÜITZLAF LEME. (2017)

Livro de referência de Minerais Comuns e Economicamente Relevantes: TECTOSSILICATOS.

Museu de Minerais, Minérios e Rochas "Prof. Dr. Heinz Ebert"

Klein, C. & Hulburt Jr., C. S. 1993. **Manual of mineralogy (after James D. Dana) (21º edition)**. Wiley International ed., New York, EUA. 681 p.

Klockmann, F. & Ramdohr, P. 1955. **Tratado de Mineralogia (2º edición)**. Versión del Alemán por el Dr. Francisco Pardillo. Editorial Gustavo Gili S.A., Barcelona, Espanha. 736 p.

Leinz, V. & Campos, J. E. S. 1986. **Guia para determinação de minerais**. Companhia Editorial Nacional. São Paulo, Brasil. (10º edicão). 150 p.

Navarro, G. R. B. & Zanardo, A. 2012. De Abelsonita a Zykaíta – Dicionário de Mineralogia. 1549 p. (inédito).

Navarro, G. R. B. & Zanardo, A. 2016. **Tabelas para determinação de minerais**. Material Didático do Curso de Geologia/UNESP. 205 p.

Nesse, W. D. 2004. Introduction to Optical Mineralogy (3° edition). Oxford University Press, Inc. New York, EUA. 348 p.

Schulz, H. & Loens, J. 1967. Strukturverfeinerung von Sodalith, $Na_8Si_6Al_6O_{24}Cl_2$. **Acta Crystallographica (1,1948-23,1967)**, 23, i.p. 434.

Sinkankas, J. 1964. Mineralogy for Amateurs. Van Nostrand Reinhold Company, New York, EUA. 585 p.

Winchell, A. N. 1948. Elements of Optical Mineralogy: an introduction to Microscopic Petrography, Part II. Descriptions of Minerals (3° edition). John Wiley & Sons, Inc., New York (3° edition). 459 p.

sites consultados:

www.handbookofmineralogy.org www.mindat.org www.mineralienatlas.de http://rruff.info www.smorf.nl www.webmineral.com

Nakarro, G.R.B., Tanarro, A.,